Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.

Identifieur interne : 001C40 ( Main/Exploration ); précédent : 001C39; suivant : 001C41

Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.

Auteurs : Danqiong Huang [États-Unis] ; Wenhao Dai

Source :

RBID : pubmed:25721202

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.


DOI: 10.1007/s00299-015-1779-8
PubMed: 25721202


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.</title>
<author>
<name sortKey="Huang, Danqiong" sort="Huang, Danqiong" uniqKey="Huang D" first="Danqiong" last="Huang">Danqiong Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dai, Wenhao" sort="Dai, Wenhao" uniqKey="Dai W" first="Wenhao" last="Dai">Wenhao Dai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25721202</idno>
<idno type="pmid">25721202</idno>
<idno type="doi">10.1007/s00299-015-1779-8</idno>
<idno type="wicri:Area/Main/Corpus">001E02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E02</idno>
<idno type="wicri:Area/Main/Curation">001E02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E02</idno>
<idno type="wicri:Area/Main/Exploration">001E02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.</title>
<author>
<name sortKey="Huang, Danqiong" sort="Huang, Danqiong" uniqKey="Huang D" first="Danqiong" last="Huang">Danqiong Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dai, Wenhao" sort="Dai, Wenhao" uniqKey="Dai W" first="Wenhao" last="Dai">Wenhao Dai</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Basic Helix-Loop-Helix Transcription Factors (genetics)</term>
<term>Carotenoids (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Iron (deficiency)</term>
<term>Iron (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Caroténoïdes (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice (génétique)</term>
<term>Fer (déficit)</term>
<term>Fer (pharmacologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Études d'associations génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Basic Helix-Loop-Helix Transcription Factors</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carotenoids</term>
<term>Chlorophyll</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription à motif basique hélice-boucle-hélice</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caroténoïdes</term>
<term>Chlorophylle</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Crosses, Genetic</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Genetic Association Studies</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Clonage moléculaire</term>
<term>Croisements génétiques</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
<term>Études d'associations génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25721202</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>1211-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-015-1779-8</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Danqiong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051792">Basic Helix-Loop-Helix Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>36-88-4</RegistryNumber>
<NameOfSubstance UI="D002338">Carotenoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051792" MajorTopicYN="N">Basic Helix-Loop-Helix Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002338" MajorTopicYN="N">Carotenoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25721202</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-015-1779-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2005 Aug;15(8):613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16117851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Feb;20(2):124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25499025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Feb;132(3):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 11;9(6):e99234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24919188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(2):289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Feb;75:89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24389022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):942-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Nov;60:180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jan;80(1):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2219-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jan;5(1):27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1963 Nov;38(6):632-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16655844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 May;49(5):530-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21334215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Mar;18(3):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18268542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 May;23 (5):1815-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21586684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2493-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jan;20(2):429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 6;284(6):3470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19049971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Jun;67:63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3400-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Feb 25;397(6721):694-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10067892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 18;11:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(16):5903-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:131-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Nov 19;577(3):528-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12370409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Apr 06;10:147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Mar;104(3):815-820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Apr;26(2):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11389759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Mar 21;6:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Sep;226(4):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;411:134-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16939790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):33-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Inform. 2007 Feb 04;3:11-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19455231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dai, Wenhao" sort="Dai, Wenhao" uniqKey="Dai W" first="Wenhao" last="Dai">Wenhao Dai</name>
</noCountry>
<country name="États-Unis">
<region name="Dakota du Nord">
<name sortKey="Huang, Danqiong" sort="Huang, Danqiong" uniqKey="Huang D" first="Danqiong" last="Huang">Danqiong Huang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25721202
   |texte=   Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25721202" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020